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(1997) (growth), and Lucas (1990), Cooley and Hansen (1992), and Ohanian (1997) (policy
effects).

 Among many others, see Backus, Kehoe and Kydland (1994) (international2

economics), Auerbach and Kotlikoff (1987) (public economics), Ericson and Pakes (1995)
(industrial organization), Rust (1989) (labor economics), and Rosen, Murphy and Scheinkman
(1994) (agricultural economics).

 See Kydland and Prescott (1996), Sims (1996) and Hansen and Heckman (1996).3

1.  Introduction

Dynamic equilibrium models are now used routinely in many fields.  Such models, for

example, have been used to address a variety of macroeconomic issues, including business-

cycle fluctuations, economic growth, and the effects of government policies.   Additional1

prominent fields of application include international economics, public economics, industrial

organization, labor economics, and agricultural economics. 2

At present, however, many important questions regarding the empirical

implementation of dynamic equilibrium models remain incompletely answered.  The

questions fall roughly into two methodological groups.  The first group involves issues related

to assessing model adequacy, and the second involves issues related to model estimation.  We

contribute to an emerging literature that has begun to deal with both issues, including Watson

(1993), King and Watson (1992, 1996), Canova, Finn and Pagan (1994), Kim and Pagan

(1994), Pagan (1994), Leeper and Sims (1994), Cogley and Nason (1995), and Hansen,

McGrattan and Sargent (1997).  A 1996 Journal of Economic Perspectives symposium

focused on these issues, and two important messages emerged:   (1) dynamic equilibrium3

models, like all models, are intentionally simple abstractions and therefore should not be
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 He also notes that his failure to study cross-variable relationships is a potentially4

important omission.

construed as the true data generating process, and (2) formal methods should be developed

and used to help us assess the models more thoroughly.  In this paper, we take a step in that

direction.

Some parts of our framework are new, while others build on earlier work in interesting

ways.  In many respects, our work begins where Watson (1993) ends.  With an eye toward

future research, Watson notes that "... one of the most informative diagnostics ... is the plot of

the model and data spectra," and he recommends that in the future researchers "present both

model and data spectra as a convenient way of comparing their complete set of second

moments."   Our methods, which are based on comparison of model and data spectral density4

functions, can be used to assess the performance of a model (for a given set of parameters), to

estimate model parameters, and to test hypotheses about parameters or models.  To elaborate,

our approach is:

A.  Frequency-domain and multivariate.  Working in the frequency domain enables
decomposition of variation across frequencies, which is often useful, and the
multivariate focus facilitates simple examination of cross-variable correlations
and lead-lag relationships, at the frequencies of interest.

B.  Based on a full second-order comparison of model and data dynamics.  This is in
contrast to a common approach used in the business cycle literature of
comparing only a few variances and covariances of detrended variables from
the model economy and the actual economy.  The spectrum provides a
complete summary of Gaussian time series dynamics and an approximate
summary of non-Gaussian time series dynamics.

C.  Based on the realistic assumption that all models are misspecified.  We regard all
of the models we entertain as false, in which case traditional statistical methods
lose some of their appeal.
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D.  Graphical and constructive.  The framework permits one to assess visually and
quickly the dimensions along which a model performs well, and the dimensions
along which it performs poorly.

E.  Based on a common set of tools that can be used by researchers with potentially
very different objectives and research strategies.  The framework can be used to
evaluate strictly calibrated models, and it can also be used formally to estimate
and test models.

F.  Designed to facilitate statistical inference about objects estimated from data,
including spectra, goodness-of-fit measures, model parameters, and test
statistics.  Bootstrap methods play an important role in that regard; we develop
and use a simple nonparametric bootstrap algorithm.

G.  Mathematically convenient.  Under regularity conditions, the spectrum is a
bounded continuous function, which makes for convenient mathematical
developments.

All of the classical ideas of business-cycle analysis discussed, for example, by Lucas

(1977) have spectral analogs, ranging from univariate persistence (typical spectral shape) to

multivariate issues of comovement (coherence) and lead-lag relationships (phase shifts) at

business-cycle frequencies.  We highlight these links and draw upon the business-cycle

literature for motivation in the methodological sections 2 and 3.  The methods we develop,

however, are not wed to macroeconomics in any way; rather, they can be used in a variety of

fields.  Therefore, to introduce researchers in different areas to the use of our framework, we

apply our methods to a simple and accessible, yet rich, microeconomic model in section 4. 

We conclude in section 5.

2.  Assessing Agreement Between Model and Data

Our basic strategy is to assess models by comparing model spectra to data spectra. 

Our goal is provision of a graphical framework that facilitates visual comparisons of model

spectra to interval estimates of data spectra.  We compute model spectra exactly (either
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 Alternatively, one could fix the data spectrum, and assess sampling error in the5

model spectrum by simulating repeated realizations from the model.  The two approaches are
essentially complementary, corresponding to the "Wald" and "Lagrange multiplier" testing
perspectives.  See, for example, Gregory and Smith (1991).

 In many cases, detrending of some sort will be necessary to achieve covariance6

stationarity.

analytically or numerically); thus, they have no sampling uncertainty.  Sampling error does,

however, affect the sample data spectra, which are of course just estimates of true but

unknown (population) data spectra.  We exploit well-established procedures for estimating

spectra, and we develop and use bootstrap techniques to assess the sampling uncertainty of

estimated spectra.5

2a.  Estimating Spectra

Consider the N-variate linearly regular covariance stationary stochastic process,

where  B  = I, and the coefficients are square summable (in the matrix sense).   The0
6

autocovariance function is  and the spectral density function is

Consider now a generic off-diagonal element of F( ), f ( ).  In polar form, the cross-kl

spectral density is f ( ) = ga ( ) exp[i ph ( )], where ga ( ) = [re (f ( )) + im (f ( ))]  iskl   kl   kl   kl   kl   kl
2   2 1/2

the gain or amplitude, and where ph ( ) = arctan{im(f ( )) / re(f ( ))} is the phase.  As iskl   kl   kl
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ȳ (ȳ1, ..., ȳN) .
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 Alternatively, of course, one may smooth the sample spectral density function7

directly.  The duality between the two approaches, for appropriate window choices, is well
known.  See Priestley (1981).

well known, the gain tells how the amplitude of y  is multiplied in contributing to thel

amplitude of y  at frequency , and phase measures the lead of y  over y  at frequency . k          k  l

(The phase shift in time units is ph( )/ .)  We shall often find it convenient to examine

coherence rather than gain, where the coherence is defined as  which

measures the squared correlation between y  and y  at frequency .k  l

Given a sample path  we estimate the Nx1 mean vector µ with

  From this point onward, we assume that all sample paths have been

centered around this sample mean.  We estimate the autocovariance function with 

 (k = 1, ..., N, l = 1, ..., N), where 

  We estimate the spectral density matrix using the Blackman-Tukey

lag-window approach in which we replace the sample spectral density function,

 (  ) with one involving the

"windowed" sample autocovariance sequence,  where 

 is a matrix of lag windows.  The Blackman-Tukey procedure results in a consistent

estimator if we adjust the lag window ( ) with sample size in such a way that variance and

bias decline simultaneously.   We then obtain the sample coherence and phase at any7

frequency  by transforming the appropriate elements of 

2b.  Assessing Sampling Variability

A key issue for our purposes is how to ascertain the sampling variability of the

estimated spectral density function.  To do so, we use an algorithm for resampling from time
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 The Cholesky factor bootstrap is closely related to the Ramos (1988) bootstrap.  We8

develop the Cholesky factor bootstrap in the time domain, however, whereas Ramos proceeds
in the frequency domain.

 Note that the Cholesky factor bootstrap will miss nonlinear dynamics such as9

GARCH -- it is designed to capture only second-order dynamics, in identical fashion to
standard (as opposed to higher-order) spectral analysis.  Users should be cautious in
employing our procedure if nonlinearities are suspected to be operative, as would likely be the
case, for example, for high-frequency financial data.  Such nonlinearities are not likely to be
as important for the lower-frequency data typically analyzed in many areas of
macroeconomics, public finance, international economics, industrial organization, agricultural
economics, etc.

series data, which we call the Cholesky factor bootstrap.   The basic idea is straightforward. 8

First we compute the Cholesky factor of the sample covariance matrix of the series of interest. 

We then exploit the fact that, up to second order, the series of interest can be written as the

product of the Cholesky factor and serially uncorrelated disturbances, which can be easily

bootstrapped using parametric or non-parametric procedures.   An important feature of this9

very simple approach is that it can be used to bootstrap objects other than the spectral density

function.  Later, for example, we will use it to assess the uncertainty in a model’s estimated

parameters.

First we need some definitions and notation.  Let  and let

  Then  where 1 is an N-dimensional column vector of

ones, and   By symmetry and positive definiteness, we

can write  where the unique Cholesky factor P is lower triangular.  We estimate 

by  where 

 this ensures that we can write  where the unique Cholesky

factor  is lower triangular.  Now let  be a set of decreasing weights applied to
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the successive off-diagonal blocks of  and call the resulting matrix   Finally, let  be

the Cholesky factor of 

The fact that  implies that data generated by drawing 

and forming 

where  will have the same second-order properties as the observed data.  In

practice we replace the unknown population first and second moments with the consistent

estimates described above.  Thus, to perform a parametric bootstrap, we draw

 form 

where  and then compute both the estimates  i = 1, ..., R

and confidence intervals.  Alternatively, to perform a nonparametric bootstrap, we note that

  In practice, we draw  with replacement from  form

from which we compute  i = 1, ..., R, and then construct confidence

intervals.

In summary, there are several appealing features of the Cholesky factor bootstrap:  (1) 

it is a very simple procedure, (2)  it can be used to bootstrap a variety of objects, (3)  it does

not involve conditioning on a fitted model and therefore imposes minimal assumptions on

dynamics.  This last feature may be attractive for researchers who choose not to view the data

through the lens of an assumed parametric model.  Alternative bootstrap procedures include

the VAR bootstrap (e.g., Canova, Finn and Pagan, 1994), which can be a useful approach for
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      In this section, for notational simplicity we focus on confidence tunnels for univariate10

spectra.  As will be clear, the extension to cross spectra is immediate.

those interested in fitting a specific parametric model to the data.  Thus, the Cholesky

approach and the VAR approach can be viewed as complementary procedures.

We hasten to add, however, that the literature on bootstrapping time series in general --

and spectra in particular -- is very young and very much unsettled.  We still have a great deal

to learn about the comparative properties of various bootstraps, both asymptotically and in

finite samples, and the conditions required for various properties to obtain.  Presently

available results differ depending on the specific statistic being bootstrapped, and moreover,

only scattered first- and second-order asymptotic results are available, and even less is known

about actual finite-sample performance.  With this in mind, we present both theoretical and

Monte Carlo analyses of the performance of the Cholesky factor bootstrap in two appendixes

to this paper.  In Appendix 1, we establish first-order asymptotic validity, and in Appendix 2,

we document good small-sample performance.

2c.  Constructing Confidence Tunnels 10

If interest centers on only one frequency, we simply use the bootstrap distribution at

that frequency to construct the usual bootstrap confidence interval.  That is, we find 

such that  and  where (1- ) is the desired

confidence level, "L" stands for lower, "U" stands for upper, the "T" subscript indicates that

we tailor the band to the finite-sample size T, and the (.) superscript indicates that we take the

probability under the bootstrap distribution.  The (1- )% two-sided confidence interval is
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 In the univariate case, typically n = T/2 - 1.  In the multivariate case, the question11

arises as to "how wide to cast the net" in forming confidence tunnels.  One might view each
element of the spectral density matrix in isolation, for example, in which case each of the
respective confidence tunnels would use n = T/2 -1.  At the other extreme, one could use

, effectively forming a tunnel for the entire matrix.

 Bonferroni tunnels achieve the desired coverage only for (1) independent values of12

the estimated function across ordinates, which is clearly violated in spectral density estimation
as the smoothing required for consistency results in averaging across frequencies, and (2)
large n, because (1 - /n)   (1 - ), for any finite n.n

 This procedure is similar to the one advocated in Gallant, Rossi and Tauchen (1993).13

However, one often wants to assess the sampling variability of the entire spectral

density function over many frequencies (e.g., business-cycle frequencies, or perhaps all

frequencies) to learn about the broad agreement between data and model.  One approach is to

form the pointwise bootstrap confidence intervals described above, and then to "connect the

dots."  But obviously, a set of  confidence intervals constructed for each of n

ordinates will not achieve  joint coverage probability.  Rather, the actual confidence

level will be closer to , which holds exactly if the pointwise intervals are

independent.  A better approach is to use the Bonferroni method to approximate the desired

coverage level, by assigning  coverage to each ordinate.   The11

resulting"confidence tunnel" has coverage of at least (1 - )% and therefore provides a

conservative estimate of the tunnel. 12

A third approach to confidence tunnel construction is the supremum method of

Woodroofe and van Ness (1967) and Swanepoel and van Wyk (1986), which uses an estimate

of the (standardized) distribution of    to

construct a confidence tunnel for the curve.  Specifically, 13

(1)  Calculate .
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 See Hannan (1970), p. 294.14

 For an interesting and early discussion of this and related points, see Pagan (1994).15

(2)  Find c such that:

where we evaluate the probability with respect to the bootstrap distribution.

(3)  Construct the confidence tunnel, 

Unlike the Bonferroni tunnels, the supremum tunnels attain asymptotically correct

coverage rates even with statistical dependence among ordinates.  Little is known, however,

about the comparative finite-sample performance of the Bonferroni and supremum tunnels,

and the supremum tunnels may require very large samples for accurate coverage. 14

3.  Estimation:  Maximizing Agreement Between Model and Data

Now we consider estimation, together with the related issues of goodness-of-fit and

hypothesis testing.  To make the discussion as transparent as possible, we first discuss the

univariate case, and then we proceed to the multivariate case.

3a.  Univariate

Estimation requires a loss function, or goodness-of-fit measure, for assessing closeness

between model and data.  A strength of our approach is that many loss functions may be

entertained; the particular loss function adopted reflects the user's preferences.   In most cases15

it would seem that a function of the form
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 Note that the model spectrum is either computable analytically or numerically to any16

desired degree of accuracy.  The data spectrum, on the other hand, is consistently estimable. 

will be adequate.  The function g measures the divergence between  (model

spectrum) and  (estimate of data spectrum).   We weight this divergence across16

frequencies by the function .  In practice, we replace the integral with a sum over

frequencies    Quadratic loss with uniform weighting over all

frequencies, for example, corresponds to  and  yielding

The goodness-of-fit measure may readily be transformed into an estimation criterion

by taking

The Gaussian ML estimator is asymptotically of this form, for a particular and potentially

restrictive choice of g, , and w; it is 

To compute standard errors and interval estimates for parameters of interest, and to

test hypotheses about the elements of  we again use the Cholesky factor bootstrap.  We

proceed as follows:

(1)  At bootstrap replication (i), draw a bootstrap sample of size T using the Cholesky

factor algorithm.

(2)  Numerically minimize  to get 



ˆ (i)
gw,
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(3)  Repeat R times.

(4)  Compute standard errors, form interval estimates, implement bias corrections, or

test hypotheses using the distribution of  i = 1, ..., R. 

Note that, unlike most implementations of the bootstrap, ours does not involve conditioning

on the model; instead, we generate the bootstrap samples directly from the autocovariance

matrix of the data. This is important in our environment, in which all models are best regarded

as false.

In closing this section, let us elaborate on our allowance for differential weighting by

frequency.  There are at least two reasons for entertaining this possibility.  First, use of a loss

function that weights differentially by frequency may be helpful in dealing with measurement

error, which often may not contaminate all frequencies equally.  Thus, it would seem prudent

to downweight those frequencies that are assumed to be more contaminated by measurement

error.

Second, use of a loss function that weights differentially by frequency may be

important in misspecified models.  For example, as discussed by Hansen and Heckman

(1996), model misspecification may contaminate some frequencies more than others. 

Examples of this include potential contamination at seasonal frequencies, as in the work of

Hansen and Sargent (1993) and Sims (1993).  Watson (1993) also advocates the use of

differential weighting in parameter estimation, for the same reason, although he doesn't

pursue the matter.  As Watson notes, optimizing a loss function at particular frequencies

corresponds to constructing an analog estimator along the lines of Manski (1988).

3b.  Multivariate
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The multivariate analog of our earlier loss function is

where  denotes component-by-component multiplication.  The multivariate analog of our

earlier univariate quadratic loss function, for example, is

 where ,  

The estimation criterion function has the same form as in the univariate case,

and the bootstrap approaches to computing standard errors, confidence intervals, and

hypothesis testing parallel the univariate case precisely.  Furthermore, as expected, the

multivariate Gaussian ML estimator emerges as a special and potentially restrictive case; it is

It is worth emphasizing how all parts of the spectrum contribute to loss in the multivariate

case.  Consider, for example, a bivariate model (variables x and y) under quadratic loss.  Then

where
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Thus,

This expression shows clearly how the goodness of fit of both univariate spectra, as well as

both the real and imaginary parts of the cross spectrum, contribute to loss.

4.  Application:  The U.S. Cattle Cycle

Let us begin by summarizing the framework for assessing and estimating dynamic

stochastic models developed in sections 2 and 3 of this paper.  We first perform a full second-

order comparison of model and data by visually comparing model spectra, data spectra, and

associated confidence tunnels about the data spectra computed using the simple Cholesky

factor bootstrap.  To formally assess divergence between model and data spectra, and to

estimate model parameters, we develop an explicit loss function that reflects the specific

objectives of the investigation.  Finally, we assess the sampling distributions of estimated

parameters again using the Cholesky factor bootstrap.

It is well known that cattle stock and consumption are among the most periodic time

series in economics, with a cycle of roughly ten years in U.S. ("the cattle cycle").  In this
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 The data were kindly supplied by Sherwin Rosen and were originally obtained from17

Historical Statistics:  Colonial Times to 1970 and Agricultural Statistics, published by the
U.S. Department of Agriculture.

 The fitted trends are also shown in Figures 1 and 2.18

 We smooth the sample autocovariance function using a Bartlett window with19

truncation lag 24.

section, we provide a detailed illustration of the use of our assessment and estimation

techniques by applying them to an important model of the cattle cycle developed by Rosen,

Murphy, and Scheinkman (RMS, 1994).  This simple yet rich model allows us to illustrate

very clearly the application of all the tools in our framework, and moreover, our findings

provide new insight into the RMS model and its agreement with the data.

4a.  The Data

We use annual data on U.S. cattle consumption and stock, 1900-1989.   We plot the17

series in Figures 1 and 2, and the cycle is visually apparent.  Moreover, the series are clearly

trending.  Following RMS, we remove a linear trend from each series prior to additional

analysis, allowing for a break in the slope of the trend in 1930. 18

We present the estimated data spectrum in Figure 3.   We make use -- here and19

throughout -- of a matrix graphic with univariate spectra plotted on the main diagonal,

coherence in the upper-right corner, and phase in the lower-left corner.  Not all frequencies

are of equal interest, however.  The frequencies most relevant to an investigation of the cattle

cycle, typically thought to have a period of roughly ten years, are not those in the entire [0, ]

range, but rather those in a subset that excludes very low and very high frequencies.  This

presents no problem for our procedures and in fact provides a good opportunity to illustrate

the ease with which they can be tailored to study specific applications.  Thus, for much of our
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 Phase shift is measured in years by which consumption leads stock.20

 The detrended consumption and stock data are nevertheless highly persistent.  We21

present some Monte Carlo evidence in Appendix 2 that indicates that the Cholesky factor
bootstrap performs well in such stationary, but highly persistent, environments.

 From this point onward, we adopt the log scale for consumption and stock spectra22

whenever confidence tunnels are included.

analysis, we concentrate on the frequency band corresponding to periods of 30 years to 4

years, indicated by the shaded region in Figure 3 and subsequent figures.

Four features of the point estimates of the data spectrum stand out.  First, the

consumption spectrum (and to a lesser extent, the stock spectrum) displays a power

concentration at roughly a ten-year cycle.  Second, both the consumption and stock spectra

otherwise have Granger's (1966) typical spectral shape, with high power at low frequencies,

and declining power throughout the frequency range.  Third, the coherence between

consumption and stock is generally high and varies across frequencies, with a maximum

(about .85) at roughly a ten-year cycle.  Finally, the phase shift varies with frequency; within

the band of interest, the maximum (about one year) is again at roughly a ten year cycle. 20

In Figure 4 we present the data spectrum along with 90% confidence tunnels

computed using the conservative Bonferroni technique in conjunction with the Cholesky-

factor bootstrap.   To facilitate evaluation, we plot the consumption and stock spectra on a21

logarithmic scale.   All of the point estimates display substantial uncertainty, as manifest in22

the 90% confidence tunnels.  Such uncertainty associated with estimated spectra is typical of

economic time series, although it often goes unacknowledged.

4b.  The Model

We begin with some accounting identities.  The head count of all animals ( ) is the
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sum of the adult breeding stock  the stock of calves (assumed equal to ), and the

stock of yearlings (assumed equal to ), where g is a fertility parameter.  That is,

The adult breeding stock consists of surviving stock from the previous period (assumed equal

to ) and the yearlings from t-1 entering the adult herd ( ) less the number that are

marketed ( ),

We are concerned with the equilibrium determination of c  and y .  The risk-neutralt  t

rancher maximizes the present discounted value of expected profits, which involves equating

the expected marginal benefit of marketing an animal for consumption to the expected

marginal benefit of holding the animal for breeding.  First, suppose that the rancher markets

the animal for consumption.  He receives net revenue  where p  is price and m  ist    t

finishing cost.  Alternatively, suppose the rancher holds an animal for breeding.  Expected

discounted net revenue is the sum of expected discounted revenue from selling tomorrow plus

expected discounted revenue from marketing its offspring, less expected total holding costs

(z ),   Total holding cost equals the sum of time t holding costs ,t

discounted holding costs of the resultant time t+1 calves, and discounted holding costs of the

resultant time t+2 yearlings.  That is,  (assuming proportional costs

for calves and yearlings,  and ).

In equilibrium, the expected marginal net revenue from marketing for consumption

equals the expected marginal discounted net revenue from holding for breeding; that is,



(1 1L)(1 L) ct (1 1L) t

(1 1L)(1 2L)(1 3L)(1 L) yt (1 gL gL 2) t,

3 (1 ) 2 g 0,

g 3 3 (1 ) 1 0.

fc( ) 2 (1 1e
i ) 2

(1 1e
i )(1 e i ) 2

fy( ) 2 (1 ge i ge 2i ) 2

(1 1e
i )(1 2e

i )(1 3e
i )(1 e i ) 2

,

fcy( )
(1 1e

i )(1 2e
i )(1 3e

i )

(1 ge i ge 2i )
fy( ).

mt, ht, dt

t,

ct yt

1 { 2, 3}
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 d  is a preference shock.  We have not discussed the demand side of the model,23
t

because we do not use it in estimation.

We close the model by specifying the exogenous processes  as first-order

autoregressions.   Following RMS, we assume that each of the three shocks has common23

serial-correlation parameter .

The model structure implies that the reduced-form equations for c  and y  can bet  t

expressed in terms of a single disturbance,  which is a linear combination of the

independent innovations from the three AR(1) driving processes.  In particular,

~ARMA(2,1) and ~ARMA(4,2):

where  is the one unstable root and  are the two stable roots of 

and  is the one stable root of

The associated univariate spectra are

and the cross spectrum is



2

2

-20-

 Gaussian Band-ML is the maximum likelihood analog of Engle's (1974) band-24

spectral linear regression.  Band-ML may of course be undertaken for models much more
complicated than simple linear regression, such as the present one.

These equations provide a full description of the model in the frequency domain.   is a

complicated function of the structural parameters, including some from the demand side of

the model.  All of the parameters of present interest, however, may be identified from the

other reduced-form parameters, with the exception of  and .  We therefore treat  as a0  1

free parameter and estimate it subject to no restrictions.

RMS do not estimate the cattle cycle model.  Rather, they choose values for the

behavioral parameters and report that the calibrated model fits the data well.  In the following

section, we explicitly estimate the model and compare our findings to those of RMS.

4c.  Assessing, Estimating, and Testing the Model

To assess agreement between a parameterized version of the model and the data, or to

estimate parameters formally, it is necessary to construct an explicit loss function.  We use a

loss function that explicitly incorporates the focus in the cattle cycle literature on cycles of

roughly 10 years.  The loss function, which measures divergence between model and data

spectra only within a particular frequency band, leads us to an estimator that we call band-

restricted maximum likelihood (Band-ML).  We exclude frequencies corresponding to periods

of more than 30 years or less than 4 years.   From the standpoint of our earlier discussion of24

frequency downweighting, this corresponds to weighting frequencies in the band of interest

equally, and giving frequencies outside the band zero weight.

In Figure 5 we display the model spectrum evaluated at the Band-ML parameter

estimates.  Given the objective of constructing a simple model that is consistent with periodic
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 When constructing the bootstrap confidence tunnel, we apply a Bartlett window to25

the off-diagonal elements of the covariance matrix, and we use a truncation lag of 24.

behavior in these series, a surprising finding is that neither the consumption nor the stock

model spectrum has a peak corresponding to a ten-year cycle.  Instead, the main

distinguishing feature of both model spectra is Granger’s (1966) classic spectral shape.  This

suggests that at the band-ML optimum, the model does not easily produce cyclical behavior. 

The model phase shift also declines monotonically, which contrasts somewhat with the point

estimate of the phase shift, which has a local peak at roughly the ten-year cycle.  Finally, the

model coherence reminds us of yet another of the model’s limitations:  because it is driven by

a single shock, the model is singular, which produces unit coherence at all frequencies

regardless of the parameter configuration.

To evaluate divergence between model and data, we plot the model spectrum in Figure

6, together with the earlier-discussed 90% confidence tunnels for the data spectrum, produced

with 200 replications of the non-parametric Cholesky factor bootstrap.   The diagonal25

elements provide comparative assessments of model and data univariate dynamics, and the

off-diagonal elements provide comparative assessments of cross-variable dynamics.

Figure 6 reveals some divergence between model and data beyond the earlier-

discussed fact that the model spectrum fails to display the internal spectral peaks found in the

data spectrum.  First, the rate of decay of the model consumption spectrum appears

significantly slower than that of the data spectrum; thus, although the consumption model and

data spectra agree over most of the relevant frequency range, they begin to deviate

substantially for cycles with periods of 4 years or less.  Second, and conversely, the rate of
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 RMS did not report a value for the scale parameter; we start it at 1.7.26

decay of the model stock spectrum appears significantly  faster than that of the data spectrum. 

The two diverge not only at high frequencies, but also over much of the relevant frequency

range.  In particular, the model stock spectrum lies slightly outside the lower region of the

90% confidence tunnel for cycles of about 20 years and less.  Third, the phase shift implied

by the model tends to be significantly larger than the phase shift found in the data over the

frequencies of interest.  Finally, model and data coherence diverge; in spite of the fact that the

confidence tunnel is very wide, the unit model coherence is always outside the confidence

tunnel for the data coherence.

Let us now discuss the band-ML estimation in greater detail.  We estimate model

parameters using the simplex algorithm, which is a derivative-free method, as implemented in

the Matlab fmins.m procedure.  Using penalty functions, we constrain the discount factor to

be between 0.65 and 1.00, the fertility rate to be between 0.00 and 1.00, the death rate to be

between 0.00 and 1.00, the persistence parameter to be between 0.00 and 1.00, and the scale

parameter to be between 0.10 and 7.00.  We start the iterations with the RMS parameter

values for the discount rate, fertility rate, death rate, and persistence parameter.   In our26

experience, estimation is numerically straightforward and stable; the estimated parameter

vector is always in the interior of the constraint set, convergence is fast, and alternative

starting values produce virtually identical estimates.  In contrast, the RMS model has proven

to be quite difficult to estimate using more traditional approaches.  For example, Hansen,

McGrattan, and Sargent (1997) find that standard time-domain ML fails to converge unless

the discount factor is fixed prior to estimation.
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We present the Band-ML estimates and the RMS parameter values in Table 1.  We

have two main findings.  First, several of the parameter values obtained by band-restricted

maximum likelihood are similar to those chosen by RMS.  In particular, the estimate of the

death rate parameter (.08) is nearly identical to the RMS value (0.10), and the estimate of the

producer's discount factor (.86) is close to the RMS value (0.91).  The estimated fertility

parameter (0.67) is lower than but nevertheless close to the RMS value (0.85), which RMS

choose based on biological considerations.

Our second main finding is that the band ML estimate of the persistence parameter,

which is a fundamental object in the RMS model, differs substantially from the RMS value. 

RMS choose a fairly persistent value of 0.6.  In contrast, we find that optimizing the band-ML

loss function requires very little persistence in the driving process (0.2).  This implies that the

RMS model has a strong internal propagation mechanism:  the model takes shocks with

relatively little serial correlation and transforms them into series that display substantial

persistence in equilibrium.  This dimension of the RMS model differs fundamentally from

standard dynamic equilibrium models used in macroeconomics, international economics, and

public finance.  As Watson (1993) and others have noted, models used in those fields

typically have weak internal propagation mechanisms -- they require highly persistent

underlying shocks to generate a realistic amount of serial correlation in the variables

determined in equilibrium.  This is considered to be a shortcoming of the models and is the

focus of much current research.  Thus, a potentially important contribution of the RMS model

is that the rich nature of its dynamic propagation mechanisms may be adapted to help

researchers in other fields construct models with stronger internal propagation.
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In addition to finding the parameter estimates that maximize agreement between model

and data, we can assess their sampling uncertainty within our framework.  Standard errors are

of some use in that regard, in spite of the fact that the sampling distributions need not be

Gaussian.  We compute them using 200 replications of the Cholesky factor bootstrap

procedure, and we report them in parentheses below the estimated parameters in Table 1. 

More generally, our bootstrap procedures allow us to estimate the entire sampling

distributions of the estimated parameters; we report in them in Figure 7.  The estimated

sampling distributions of the discount factor, the depreciation rate, and the persistence

parameter are fairly concentrated, while the estimated sampling distribution of fertility rate is

more dispersed.

Our framework also enables us to examine the joint distribution of the estimated

parameters.  In Table 2 we present bootstrap estimates of the correlations between the

estimated parameters.  Perhaps the most interesting relationship is the strong negative

correlation between the discount factor and the fertility rate, which occurs because the

discount factor and the fertility rate enter multiplicatively in one of the cubic equations that

define the ARMA polynomials.  This implies that the loss function trades off high fertility

rates for low discount factors, and suggests that fixing either one of the parameters at the

higher RMS value would tend to result in an even lower estimate for the other.

5.  Concluding Remarks

We have described a framework for evaluating dynamic economic models that should

be useful to applied economists in many fields.  The framework is flexible -- it can be used by

researchers to formally evaluate purely calibrated models, and it can also be used by
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researchers interested in estimating parameters and conducting inference.  Moreover, it is

graphical and constructive, and it takes seriously several important issues in the quantitative

analysis of simple, dynamic equilibrium models:  model misspecification, the user's

objectives, and small sample sizes.  Its frequency-domain foundations provide useful

diagnostics that nicely complement alternative time-domain approaches, such as Canova, Finn

and Pagan's (1994) approach based on estimated VARs.

Our analysis of the RMS model of cattle cycles illustrated the use of our tools for

assessing agreement between models and data at pre-set parameter values, as well as for

formally estimating models and performing statistical inference.  In addition, it shed new light

on the characteristics of the RMS model, and in particular, its strong internal propagation

mechanism.  Our analysis also revealed several deficiencies of the model, not the least of

which is its inability to generate internal spectral peaks in the model spectra evaluated at the

band-ML estimates.  

The ultimate goal of the research program of which this paper is a part is to facilitate

communication between researchers with potentially very different research objectives and

strategies, thereby bringing modern dynamic economic theory into closer and more frequent

contact with dynamic economic data.  As economists use richer and more complicated models

to understand a wider variety of data, we hope that our framework will find use in discerning

the dimensions along which models are consistent -- and inconsistent -- with data.  That

information can in turn be used to construct new and improved models.
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Table 1
Parameter Estimates

Band-Restricted Maximum Likelihood Estimation

W44444444444444444444444444444444444444444444444444444444
Parameter:   

W44444444444444444444444444444444444444444444444444444444
Estimation or
Calibration Method

           Band-ML .86 .67 .08 .21 2.10
(.03) (.09) (.03) (.10) (.37)

                RMS .909 .85 .10 .60 NA
(NA) (NA) (NA) (NA) (NA)

W44444444444444444444444444444444444444444444444444444444U

Notes to Table:   is the discount factor, g is the is the fertility rate,  is the death rate, and  is
the persistence parameter.  Band-ML denotes band-restricted maximum likelihood estimation,
with the frequency band used for estimation corresponding to periods from 30 to 4 years .
Standard errors, based on 200 bootstrap replications, appear in parentheses.  RMS denotes the
Rosen-Murphy-Scheinkman calibrated parameters.  (They have no standard errors, because they
were not estimated.)

Table 2
Estimated Parameter Correlations

Band-Restricted Maximum Likelihood Estimation

W444444444444444444444444444444444

W444444444444444444444444444444444
 1.00

 -.73 1.00

 .49 -.37 1.00

 -.19 .10 .06 1.00
W444444444444444444444444444444444U

Notes to Table:   is the discount factor, g is the fertility rate,  is the death rate, and  is the
persistence parameter.  Estimated parameter correla tions are based on 200 bootstrap replications.
The frequency band used for estimation corresponds to periods from 30 to 4 years.
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Figure 1
U.S. Cattle Consumption, 1900-1990
Actual and Estimated Trend

Figure 2
U.S. Cattle Stock, 1900-1990
Actual and Estimated Trend

Notes to Figure:  We show cattle consumption (solid line) and the estimated kinked-linear trend
(dashed line).

Notes to Figure:  We show cattle stock (solid line) and the estimated kinked-linear trend (dashed
line).
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Figure 3
Estimated Spectral Density Matrix
U.S. Cattle Consumption and Stock

Notes to Figure:  We detrend all data using the kinked-linear method.  We show the poin t
estimate of each element of the spectral density matrix.  The frequency band indicated by vertical
dashed lines corresponds to cycles with periods of 30 to 4 years and is the band of primar y
relevance for studying cattle cycles.
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Figure 4
Estimated Spectral Density Matrix and Confidence Tunnels
U.S. Cattle Consumption and Stock

Notes to Figure:  We detrend all data using the kinked-linear method.  We show the poin t
estimate together with a 90% confidence tunnel for each element of the spectral density matrix.
The frequency band indicated by vertical dashed lines corresponds to cycles with periods of 30
to 4 years and is the band of primary relevance for studying cattle cycles.
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Figure 5
Model Spectrum Evaluated at Band-ML Estimates
U.S. Cattle Consumption and Stock

Notes to Figure:  We detrend all data using the kinked-linear method.  We show the mode l
spectrum evaluated at the band-restricted maximum likelihood parameter value s, for each element
of the spectral density matrix.  The frequency band indicated by ver tical dashed lines corresponds
to cycles with periods of 30 to 4 years and is the band of primary relevance for studying cattle
cycles.
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Figure 6
Model Spectra, and Data Spectra Confidence Tunnels
U.S. Cattle Consumption and Stock

Notes to Figure:  We detrend all data using the kinked-linear method.  We show the 90 %
confidence tunnel for the data spectrum, together with the model spectrum evaluated at the band-
restricted maximum likelihood parameter values , for each element of the spectral density matrix.
The frequency band indicated by vertical dashed lines corresponds to cycles with periods of 30
to 4 years and is the band of primary relevance for studying cattle cycles.
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Bootstrap Estimates of Sampling Distributions

Notes to Figure:  Estimated sampling distributions are based on 200 bootstrap replications.
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 This appendix was written by J. Hahn (Department of Economics, University of27

Pennsylvania) and F.X. Diebold.

 Many downweighting schemes are admissible; the situation is precisely analogous to28

the variety of admissible windows for estimating spectra.

Appendix 1

Asymptotic Properties  of the Cholesky Factor Bootstrap27

Under a normality assumption, Ramos (1988) proves first-order validity of what is

essentially a frequency-domain variant of the Cholesky factor bootstrap for smooth

functionals of the spectrum, but ironically enough, his proof does not cover the spectrum

itself, on which our attention centers.  In this appendix, we establish first-order asymptotic

validity of the Cholesky factor bootstrap for the spectrum.  The intuition is simple enough.  In

the finite-ordered MA(q) case in which a bound on the order m q is known, the Cholesky

factor bootstrap is obviously valid, as all autocovariances beyond displacement m are known

to be zero, which can be imposed in construction of .  In the general case, which via Wold's

theorem corresponds to an infinite-ordered moving average with square summable

coefficients, the key is to allow the number and impact of the sample autocovariances

included in the construction of  to grow with sample size, but at a slower rate.  Hence the

downweighting associated with the use of  rather than .28

1.  Background and Assumptions

Let {y , t = 1, ..., T} be the sample path of a covariance stationary Gaussian timet

series.  For simplicity, we assume that y  is a scalar random variable with known mean, whicht

we take as 0 without loss of generality.  Let
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We estimate the spectral density nonparametrically in the usual way as

for

We usually use

where the kernel k (.) is a continuous symmetric function with k (0) = 1.

Assumption.   We assume that

for some strictly positive q and k.

Assumption.  We assume that 
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for some strictly positive p.

Assumption.  We assume that

and

where m = min (p,q).  

The asymptotic properties of our spectral density estimator are well known.  Anderson

(1971), for example, discusses them in detail, and for convenience of exposition we will

pattern this appendix closely after Anderson's Chapter 9.  In particular, we will characterize

the "bootstrap world" distribution using precisely the same flow of logic that Anderson uses to

characterize the "real world" distribution.

2.  The Bootstrap World

We rely on the triangular nature of the bootstrap, which implies that we need not even

consider the bootstrap explicitly.  Instead, we need only consider a triangular array of

univariate time series that converges to the original time series.  We will invoke a number of

regularity conditions as we proceed, and we will verify them later.

Condition.   is a triangular array of zero mean stationary Gaussian random

variables.

Let
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Lemma 1

The proof of the lemma is trivial and we omit it.

2a.  Asymptotic Bias

We first consider the asymptotic bias of   By Anderson's equation  (24), p. 524,

we have 
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which converges to where

If the first term in (2) is within of

which in absolute value is no greater than

and hence arbitrarily small.  If 

The second term in (2) is in absolute value no greater than
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which converges to 0.  The second term on the right hand side of (1) is in absolute value no

greater than

which converges to 0 if   The third term on the right hand side of (1) is an absolute

value no greater than

which converges to 0.  We thus conclude that the asymptotic bias of the triangular array is the

same as that given in Anderson.

2b.  Asymptotic Variance

Now we consider the asymptotic variance.  Using Anderson’s equation (44) we write

For the exact value of  see Anderson.  Consider
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The sum over r is 0 if the stated lower limit is greater than the stated upper limit.  The

difference between (4) and

is less in absolute value than

which is arbitrarily small if  is sufficiently large and if is bounded.  If k(x) is

continuous on [-1, 1], then for  and  sufficiently large, we have

for  and   From Anderson's equation

(49), p. 529, we have, for 
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 See Anderson's Problem 9.23.29

(6)

The difference between (5) and

is arbitrarily small if T is sufficiently large.  If  the limit of the sum on

For m sufficiently large, the limit of (6) is arbitrarily close to

If then the limit of (6) equals 0 because 29

Next from (3), we consider
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We approximate (7) by

which we in turn approximate by

because  can be approximated by  for large K . T

If  the limit of (8) is

Otherwise, the limit is 0.  We thus conclude that the asymptotic variance from the triangular
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array is the same as that given in Anderson Theorem 9.3.4.

2c.  Asymptotic Normality

We now discuss the asymptotic normality of the spectral estimate for the triangular

array.

Assumption.  We assume that

where v  is a sequence of i.i.d. zero mean normal random variables with variance equal to ,t
2

and 

We will find the limiting distribution of the difference between

and its expectation.  The difference between 

equals

From Anderson’s Theorem 8.2.4, we find that the variance of

equals
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It thus follows that the variance of (9) equals

which converges to 0 as T .

Now, let

Then,

where

Using Anderson’s equations (11) and (12), pp. 535-536, we find that the variance of S  is3

bounded by
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Using Anderson’s equation (13), p. 536, we find that the variance of S  and S are bounded by1  2 

Condition.  

Condition.  

Because the variance of S , S , S  disappears as n , the limit distribution of U  is the limit1  2  3        T
n

of .  Notice, as in Anderson’s equation (15), that U  is the real part ofn
T

The difference between the real parts of (10) and

has a mean square error that goes to 0 as T , because for given r and s the difference

between the summands in (10) and (11) consists of the terms in the sums on h and q that are

included in one expression and not in the other.  The number of such terms is less than AK n+T

BTn+Cn  for suitable A, B, C, the terms are uncorrelated, and the expected value of the2

square of the real part of each terms is at most
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Hence the expected value of the square of the difference for each r and s goes to zero as T . 

If k(x) is continuous on [-1,1], then k[(h+r-s)/K ] is arbitrarily close to k(h/K ) for KT      T   T

sufficiently large and |r|  n, |s|  n, |h|  K  and |h + r -s|  K .  Thus the difference betweenT      T

the real parts of (11) and

where

has a mean square error that is arbitrarily small.  The difference between the real part of (12)

and

where

has a mean square error that goes to 0 as T increases.  The process W  is stationary andqT

finitely dependent, with
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Hence the variance of (13) is  times (14).

Now let N  be a sequence of integers such that K / N   0 and N  / T  0, let M  beT        T  T    T      T

the largest integer in T / N , and letT

Then Z   j = 1, ..., M  are i.i.d. with means zero and variance given by 1- K / N  times (14). jT      T           T  T

Anderson (p. 539) notes that the difference between

is stochastically negligible as T  and that the former has a limiting normal distribution. 

Notice that neither W  nor Z  depends on { }.  We thus find that we obtain the desiredtT  jT   sT

asymptotic normal distribution of 

3.  Verifying the Conditions

Let us recall the conditions needed for asymptotic validity of the Cholesky factor

bootstrap, and then verify the conditions.

Condition 1.  {y , t=1, ..., T} is a triangular array of zero mean stationary Gaussian randomtT

variables.

Condition 2a.   (r)   (r) for every r.T

Condition 2b.  
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Condition 3.  For any K  = O(K ), *
T  T

Condition 4.  

Condition 5.  

Conditions 1 and 2a are obviously satisfied, as is Condition 3 so long as  = o(K ),T

where for the Cholesky factor bootstrap we use  where  is anT

increasing sequence of integers such that  and  = o(T).  To check Condition 4, note thatT   T

where the extreme right side of the equation converges to   Thus, by the Dominated

Convergence Theorem, the asserted convergence holds.  To check Condition 5, all we need to

notice is that {y } is a finite moving average process.tT

Condition 2b is significantly more challenging to verify.  It suffices to show that

We first show that

Observe that 
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If {y } is a mixing sequence with either  (m) of size 2 or  (m) of size (2+2 ) / , > 0, andt

if  then by White (1984), Lemma 6.19, we have

for some  which does not depend on r.  It therefore follows that*

Therefore, as long as , (15) converges to 0.  Now, because 



r 1
|r|p 1| (r)|

p

T r 1
|r|p| (r)| 0,

1
T r 1

|r|p 1| (r)| 0.

 See, for example, Bühlmann (1997) and Bickel and Bühlmann (1996).30

we easily obtain

4.  Discussion

We have proved first-order asymptotic validity for the Cholesky factor bootstrap of the

spectral density function.  Note that we bootstrap the spectral density function directly; in

particular, the object bootstrapped is not asymptotically pivotal.  Second-order asymptotic

refinements are sometimes available when bootstrapping an asymptotically pivotal statistic, as

stressed in Hall (1992).  The issue of whether or not one should focus on asymptotically

pivotal statistics, however, is by no means uncontroversial.  Edgeworth expansions, although

providing asymptotic refinements, can and sometimes do make things worse in small samples,

as stressed in Efron and Tibshirani (1993), who generally prefer to bootstrap non-pivotal

statistics.

In closing, we mention that the Cholesky factor bootstrap, which has a nonparametric

flavor, and alternatives such as the VAR bootstrap, which has a parametric flavor, are in fact

closely related.  A modern and unifying view, currently the focus of intense research in

mathematical statistics, is to interpret various time series bootstraps as sieves (in the sense of

Grenander, 1981) whose complexity increases with sample size at a suitable rate.   The30

Cholesky factor bootstrap has a sieve interpretation; the sieve is a spectrum estimated by

smoothing an increasing number of sample autocovariances.  Some alternative bootstraps



such as those based on VARs also have a sieve interpretation; the sieve is an estimated

autoregression of increasing length.  Thus, asymptotically in T, both the Cholesky factor and

VAR bootstraps can be effective algorithms for generating data with the same second-order

properties as an observed sample path.  Neither is in general "superior" to the other, and both

are the subject of ongoing research, as is the "block" bootstrap of Kunsch (1989) and Liu and

Singh (1992) as modified for spectra by Politis and Romano (1992), as well as the spectral

bootstrap of Franke and Härdle (1992).
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Appendix 2 

 Finite-Sample Properties of the Cholesky Factor Bootstrap

In this appendix, we describe the results of a Monte Carlo comparison of the finite-

sample properties of the Cholesky factor bootstrap and conventional asymptotics.  The

experiment is small by necessity, as Monte Carlo evaluation of bootstrap procedures is

extremely burdensome computationally, but we believe that it sheds some interesting light on

the finite-sample performance of the bootstrap.

We use a data-generating process with realistic dynamics, given by

which corresponds to Rudebusch's (1993) estimate for detrended log GNP and is

representative of the dynamics of a typical detrended macroeconomic series.

We examine the empirical coverage of the nominal 80% and 90% intervals

constructed using the Cholesky factor bootstrap and conventional asymptotics.  We examine

two bootstrap intervals, parametric (Gaussian) and nonparametric.  At each of 1000 Monte

Carlo replications, we apply the Cholesky factor bootstrap with 2000 bootstrap replications. 

At each bootstrap replication we estimate the spectral density at frequencies  and .

In Table A1, we present the empirical coverage rates for bootstrap and asymptotic

confidence intervals for three innovation distributions.  First, we set  ~ iid N(0,1).  At

frequency , the actual coverage of all three intervals exceeds nominal coverage. 

However, both the parametric and nonparametric bootstrap coverage rates are much closer to

nominal coverage than those of the asymptotic approximation.  At frequency , the

asymptotic intervals similarly deliver excessively high coverage rates but the parametric

bootstrap interval in particular (and to a lesser extent the nonparametric) display nearly exact



t

2(2)

coverage.

Second, we set  to a conditionally Gaussian GARCH(1,1).  As expected, the

nonparametric bootstrap outperforms the parametric bootstrap in this case.  However, neither

the nonparametric bootstrap nor the asymptotic approximation appear definitively best in

terms of actual coverage.

Finally, the innovation is iid , normalized to have zero mean and unit variance. 

As with iid N(0,1) innovations, we find that the asymptotic approximation tends to give rise to

excessively wide confidence intervals.  At a nominal coverage level of 90%, both bootstraps

deliver more accurate coverage rates.  At the nominal 80% level, only the parametric

bootstrap dominates the asymptotic interval.
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Table A1
Empirical Coverage

Bootstrap and Asymptotic Confidence Intervals 

Parametric Nonparametric
Nominal Bootstrap Bootstrap Asymptotic
Coverage Interval Interval Interval

Gaussian Innovations
.80 .827                 .831                 .912
.90 .913                 .910                 .974

.80   .795                 .780                 .827

.90 .904                 .901                 .980

Conditionally Gaussian
GARCH(1,1) Innovations

.80 .696                  .718                .767

.90 .808                  .838                .845

.80 .770                  .818                .789 

.90 .863                  .905                .924

Standardized Chi-Square
Innovations

.80 .843                   .862                .913

.90 .916                   .933                .963
          

.80 .798                   .852                .824

.90 .901                   .939                .979

Notes to Table:  For each innovation distribution, we generate data from an AR(2) with
parameters 1.335 and -.401, with sample size T=100.  We perform 2000 bootstrap iterations
in each of 1000 Monte Carlo trials.
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